Articles

Deteksi Atap Bangunan Berbasis Citra Udara Menggunakan Google Colab dan Algoritma Deep Learning YOLOv7

Rangga Gelar Guntara

View Author Affiliations
  • Rangga Gelar Guntara: Universitas Pendidikan Indonesia, Indonesia
Published:
May 23, 2023
Pages:
9-18

Views

2.009

Views

Downloads

2.416

Downloads

Article Metrics


Share Article:

Abstract

This article presents a deep learning-based approach for roof building detection in aerial imagery using the Yolov7 algorithm and Google Colab. We trained the Yolov7 model on a dataset of annotated aerial images and tested its performance on a testing set of 200 images. Our experimental results show that the Yolov7 model achieved an F1 score of 80% for roof building detection on the testing set, indicating that our approach can accurately detect roof buildings in aerial imagery. This approach can be useful in various applications, such as urban planning, disaster management, and infrastructure development. The availability of aerial imagery and the ability to use deep learning algorithms make it possible to automate the process of roof building detection, which can save time and resources. This research can be extended by investigating the use of other deep learning algorithms or combining multiple algorithms to improve the accuracy of roof building detection in aerial imagery.

Author Biographies
Rangga Gelar Guntara

Universitas Pendidikan Indonesia

Program Studi Bisnis Digital

Article Identifiers
  • Article Title: Deteksi Atap Bangunan Berbasis Citra Udara Menggunakan Google Colab dan Algoritma Deep Learning YOLOv7
  • DOI: 10.59431/jmasif.v2i1.156
  • Publication Date: 2023-05-23
  • Journal: Jurnal Manajemen Sistem Informasi (JMASIF)
  • Volume: 2
  • Issue: 1
  • Pages: 9-18
References
  • A. A. Ab Rahman et al., “Applications of Drones in Emerging Economies: A case study of Malaysia,” in 2019 6th International Conference on Space Science and Communication (IconSpace), IEEE, Jul. 2019, pp. 35–40. doi: 10.1109/IconSpace.2019.8905962. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • A. D. Schlosser, G. Szabó, L. Bertalan, Z. Varga, P. Enyedi, and S. Szabó, “Building Extraction Using Orthophotos and Dense Point Cloud Derived from Visual Band Aerial Imagery Based on Machine Learning and Segmentation,” Remote Sens (Basel), vol. 12, no. 15, p. 2397, Jul. 2020, doi: 10.3390/rs12152397. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • N. Pourebrahim, S. Sultana, J. Edwards, A. Gochanour, and S. Mohanty, “Understanding communication dynamics on Twitter during natural disasters: A case study of Hurricane Sandy,” International Journal of Disaster Risk Reduction, vol. 37, p. 101176, Jul. 2019, doi: 10.1016/j.ijdrr.2019.101176. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • R. Gelar Guntara, “Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 1, pp. 55–60, Feb. 2023, doi: 10.47233/jteksis.v5i1.750. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • N. D. T. Yung, W. K. Wong, F. H. Juwono, and Z. A. Sim, “Safety Helmet Detection Using Deep Learning: Implementation and Comparative Study Using YOLOv5, YOLOv6, and YOLOv7,” in 2022 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), IEEE, Oct. 2022, pp. 164–170. doi: 10.1109/GECOST55694.2022.10010490. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • S. Liu, Y. Wang, Q. Yu, H. Liu, and Z. Peng, “CEAM-YOLOv7: Improved YOLOv7 Based on Channel Expansion and Attention Mechanism for Driver Distraction Behavior Detection,” IEEE Access, vol. 10, pp. 129116–129124, 2022, doi: 10.1109/ACCESS.2022.3228331. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • A. Al-Kaff, D. Martín, F. García, A. de la Escalera, and J. María Armingol, “Survey of computer vision algorithms and applications for unmanned aerial vehicles,” Expert Syst Appl, vol. 92, pp. 447–463, Feb. 2018, doi: 10.1016/j.eswa.2017.09.033. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • C. Kyrkou and T. Theocharides, “EmergencyNet: Efficient Aerial Image Classification for Drone-Based Emergency Monitoring Using Atrous Convolutional Feature Fusion,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 13, pp. 1687–1699, 2020, doi: 10.1109/JSTARS.2020.2969809. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • A. Ebrahimifakhar, A. Kabirikopaei, and D. Yuill, “Data-driven fault detection and diagnosis for packaged rooftop units using statistical machine learning classification methods,” Energy Build, vol. 225, p. 110318, Oct. 2020, doi: 10.1016/j.enbuild.2020.110318. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • W. Chen, X. Li, and L. Wang, “Fine Land Cover Classification in an Open Pit Mining Area Using Optimized Support Vector Machine and WorldView-3 Imagery,” Remote Sens (Basel), vol. 12, no. 1, p. 82, Dec. 2019, doi: 10.3390/rs12010082. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • E. Isleyen, S. Duzgun, and R. McKell Carter, “Interpretable deep learning for roof fall hazard detection in underground mines,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 13, no. 6, pp. 1246–1255, Dec. 2021, doi: 10.1016/j.jrmge.2021.09.005. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • R. Castello, S. Roquette, M. Esguerra, A. Guerra, and J.-L. Scartezzini, “Deep learning in the built environment: automatic detection of rooftop solar panels using Convolutional Neural Networks,” J Phys Conf Ser, vol. 1343, no. 1, p. 012034, Nov. 2019, doi: 10.1088/1742-6596/1343/1/012034. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • P. Li et al., “Understanding rooftop PV panel semantic segmentation of satellite and aerial images for better using machine learning,” Advances in Applied Energy, vol. 4, p. 100057, Nov. 2021, doi: 10.1016/j.adapen.2021.100057. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • A. Sampath, P. Bijapur, A. Karanam, V. Umadevi, and M. Parathodiyil, “Estimation of rooftop solar energy generation using Satellite Image Segmentation,” in 2019 IEEE 9th International Conference on Advanced Computing (IACC), IEEE, Dec. 2019, pp. 38–44. doi: 10.1109/IACC48062.2019.8971578. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • M. Amo-Boateng, N. Ekow Nkwa Sey, A. Ampah Amproche, and M. Kyereh Domfeh, “Instance segmentation scheme for roofs in rural areas based on Mask R-CNN,” The Egyptian Journal of Remote Sensing and Space Science, vol. 25, no. 2, pp. 569–577, Aug. 2022, doi: 10.1016/j.ejrs.2022.03.017. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • A. Hussain and A. Khunteta, “Semantic Segmentation of Brain Tumor from MRI Images and SVM Classification using GLCM Features,” in 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), IEEE, Jul. 2020, pp. 38–43. doi: 10.1109/ICIRCA48905.2020.9183385. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • R. Avudaiammal, P. Elaveni, S. Selvan, and V. Rajangam, “Extraction of Buildings in Urban Area for Surface Area Assessment from Satellite Imagery based on Morphological Building Index using SVM Classifier,” Journal of the Indian Society of Remote Sensing, vol. 48, no. 9, pp. 1325–1344, Sep. 2020, doi: 10.1007/s12524-020-01161-0. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • L. Kumari and B. Jagadesh, “A Robust Feature Extraction Technique for Breast Cancer Detection using Digital Mammograms based on Advanced GLCM Approach,” EAI Endorsed Trans Pervasive Health Technol, vol. 8, no. 30, p. 172813, Mar. 2022, doi: 10.4108/eai.11-1-2022.172813. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” IEEE Trans Pattern Anal Mach Intell, vol. 39, no. 6, pp. 1137–1149, Jun. 2017, doi: 10.1109/TPAMI.2016.2577031. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • X. Liu, L. Wu, C. Dai, and H.-C. Chao, “Compressing CNNs Using Multilevel Filter Pruning for the Edge Nodes of Multimedia Internet of Things,” IEEE Internet Things J, vol. 8, no. 14, pp. 11041–11051, Jul. 2021, doi: 10.1109/JIOT.2021.3052016. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • Q. Chen, L. Wang, Y. Wu, G. Wu, Z. Guo, and S. L. Waslander, “TEMPORARY REMOVAL: Aerial imagery for roof segmentation: A large-scale dataset towards automatic mapping of buildings,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 147, pp. 42–55, Jan. 2019, doi: 10.1016/j.isprsjprs.2018.11.011. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • A. Elamin and A. El-Rabbany, “UAV-Based Multi-Sensor Data Fusion for Urban Land Cover Mapping Using a Deep Convolutional Neural Network,” Remote Sens (Basel), vol. 14, no. 17, p. 4298, Aug. 2022, doi: 10.3390/rs14174298. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • T. N. C. de Vries et al., “A quick-scan method to assess photovoltaic rooftop potential based on aerial imagery and LiDAR,” Solar Energy, vol. 209, pp. 96–107, Oct. 2020, doi: 10.1016/j.solener.2020.07.035. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • H. F. Nweke, Y. W. Teh, G. Mujtaba, and M. A. Al-garadi, “Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions,” Information Fusion, vol. 46, pp. 147–170, Mar. 2019, doi: 10.1016/j.inffus.2018.06.002. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • W. Yuan, “Accuracy Comparison of YOLOv7 and YOLOv4 Regarding Image Annotation Quality for Apple Flower Bud Classification,” AgriEngineering, vol. 5, no. 1, pp. 413–424, Feb. 2023, doi: 10.3390/agriengineering5010027. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • H. Kimm, I. Paik, and H. Kimm, “Performance Comparision of TPU, GPU, CPU on Google Colaboratory Over Distributed Deep Learning,” in 2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), IEEE, Dec. 2021, pp. 312–319. doi: 10.1109/MCSoC51149.2021.00053. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • Y. Wu et al., “Demystifying Learning Rate Policies for High Accuracy Training of Deep Neural Networks,” in 2019 IEEE International Conference on Big Data (Big Data), IEEE, Dec. 2019, pp. 1971–1980. doi: 10.1109/BigData47090.2019.9006104. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • D. J, S. D. V, A. S A, K. R, and L. Parameswaran, “Deep Learning based Detection of potholes in Indian roads using YOLO,” in 2020 International Conference on Inventive Computation Technologies (ICICT), IEEE, Feb. 2020, pp. 381–385. doi: 10.1109/ICICT48043.2020.9112424. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • R. Yacouby and D. Axman, “Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models,” in Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, Stroudsburg, PA, USA: Association for Computational Linguistics, 2020, pp. 79–91. doi: 10.18653/v1/2020.eval4nlp-1.9. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers
  • M. Muhathir, “Compares the effectiveness of the bagging method in classifying spices using the histogram of oriented gradient feature extraction technique,” Jurnal Teknik Informatika C.I.T Medicom, vol. 15, no. 1, pp. 48–57, Mar. 2023, doi: 10.35335/cit.Vol15.2023.386.pp48-57. Google Scholar Scite Semantic Scholar Scilit Crossref Connected Papers

Issue Information

Article Details

Volume: 2
Issue: 1
Year: 2023
Published: 2023-05-23
Pages: 9-18
Section: Articles
View Full Issue
Additional Information

How to Cite

Gelar Guntara, R. (2023). Deteksi Atap Bangunan Berbasis Citra Udara Menggunakan Google Colab dan Algoritma Deep Learning YOLOv7. Jurnal Manajemen Sistem Informasi (JMASIF), 2(1), 9-18. https://doi.org/10.59431/jmasif.v2i1.156
License

License information not available.

img
img
img
img
img